DEPARTMENT OF BIOHEMISTRY (PG)

PROGRAM OBJECTIVES:

Biochemistry is an inter disciplinary program that focuses on the chemistry of living systems. It is a discipline in which biological phenomena are analysed in terms of chemistry. Biochemistry operates at molecular level and brings into light the hidden secrets of life. It is an essential part of Life science or Bioscience. It also forms the basis of the Biotechnology industry. More importantly the new and exciting disciplines of Proteomics, Genetic engineering and drug design all rely on the knowledge and competency in Biochemistry.

Large number of opportunities await candidates completing M.Sc Biochemistry . One can find opportunities in Pharmaceutical companies, research laboratories, diagnostic centres . Students interested in teaching field can join in teaching profession for courses like B.Pharm, B.Sc, M.Sc Nursing etc.

PROGRAMME OUTCOMES:

Biochemistry is an inter disciplinary program that focuses on the chemistry of living systems. It is a discipline in which biological phenomena are analysed in terms of chemistry.

PO – 1
t operates at molecular level and brings into
ight the hidden secrets of life.
O – 2
t is an essential part of Life science or
Bioscience.
O – 3
t also forms the basis of the Biotechnology
ndustry.
ildusti y.
O – 4
Able to understand the disciplines of Proteomics,
Genomics, Bioinformatics, Genetic Engineering
nd Drug design.
t ig C t S i

BIOCHEMISTRY:

COURSE OBJECTIVES:

P-IBIOMOLECULES To understand the organic chemical principles in life processes. It helps to understand the structure and function of lipid, DNA, RNA, etc.. To study developments in nutrition involving fats. To understand the industrial application of oils, fats, especially for food detergents and oleo chemicals. To understand biological processes such as protein biosynthesis, DNA replication and RNA biosynthesis. To understand the genetic code, molecular basis of mutation, PCR and nucleic acid sequencing. To understand biological processes. To understand the interaction of small molecules with polymeric molecules. To follow many new developments in the field of molecular biology and medicine. **P - II BIOCHEMICAL TECHNIQUES** CO - 1To make the students understand basic knowledge and skills in electrophoretic and radio-isotopic techniques and to provide students with hands-on experience in basic biochemical and molecular techniques.

COURSE OUTCOMES AT THE END OF I& II SEMESTERS

	*
	1
P - III PHYSIOLOGY & BIOENERGETICS	To gain knowledge of acute and chronic physiological changes that occur in the body in response to stress. To gain knowledge about human anatomy and their function of different organs such as heart, lungs, liver, kidney etc., To gain knowledge in bioenergetics, laws of thermodynamics and to describe oxidative phosphorylation etc.,
P - IV ENZYMOLOGY	To introduce students to various theoretical
r - IV ENZ I MOLOG I	and practical aspects of enzymology and stimulate their interest in learning the structure, function and kinetics of enzymes

	and their role as catalyst and regulation of cell metabolism. To integrate the practical aspects of enzymology with the kinetic theories, to provide a mechanistic overview of enzyme activity and regulation in cells. To prepare students to confidently and competently work with enzyme systems in both academic and industry. To learn the major classes of enzymes and their functions in the cells, role of coenzymes in enzyme catalysed reactions, mechanism of action of some enzymes, to define and describe the properties of enzymes and their regulation of biochemical pathways.
P - I MICROBIOLOGY	To gain basic knowledge in microbiology for their profession preparation, compare and contrast the characteristics for various microbes, viruses, bacteria, protozoans and multicellular parasites.
P – II CELL BIOLOGY& GENETICS	To enable students to understand the structures and purposes of basic components of prokaryotic and eukaryotic cells To explain Mendel's principles of inheritance and apply these to problems of inheritance, describe the different forms of inheritance patterns, explain modes of inheritance and how sex influenced inheritance and expression of genes.
P – IIII NTERMEDIARY METABOLISM	It describes all reactions concerned with the storage and generation of metabolic energy required for the synthesis of low molecular weight compounds and energy storage compounds. To give students understanding the reactions involved in the breakdown and building up of biomolecules and afford students opportunity to appreciate the relevance / application of Biochemistry to our daily activity.
P – IV MOLECULAR BIOLOGY	To gain basic knowledge and skills in molecular biology and apply the knowledge, skill awareness to topics such as Translation, Signal Hypothesis, Protein Targetting,

Molecular Chaperones, Genetic Code etc.,.

COURSE OUTCOMES AT THE END OF III & IV SEMESTERS

P - I PLANT BIOCHEMISTRY & HUMAN	To halp students to gain knowledge shout the
	To help students to gain knowledge about the
NUTRITION	electron transport in higher plants and its
	relation with the carbon fixation pathways It
	provides an integrated overview of the
	physiological requirements and functions of
	protein, energy and the major vitamins and
	minerals that are determinants of health and
	disease in human populations.
	It provides an overview of the major and
	micro nutrients relevant to human health,
	discuss the scientific rationale for defining
	nutritional requirements in healthy
	individuals and population with reference to
	specific conditions such as pregnancy,
	lactation and old age and to discuss nutrition
	related diseases such as cardiovascular
	diseases, obesity, protein energy malnutrition
	in a global context.

P – II IMMUNOLOGY	It provides an emphasis on the mechanisms involved in immune system development and responsiveness, structure of T-cells, B-cells, receptors of T-cells, B-cells, introductory lectures serve to describe and differentiate between natural defensive mechanism and adaptive immunity.
P – III REGULATION OF GENE	To acquire basic knowledge on organisation
EXPRESSION & GENETIC	and maintenance of the genome and on
ENGINEERING	control of gene expression. To understand the
	processes that govern cell cycle and control
	mechanisms of cell death and renewal; to
	recognise the scheme of the cell-cell
	interactions and cell signalling; to relate the
	irregularities in the genome and basic cell
	processes to the development of cancer; to
	acquire the principals and practical
	applications of the basic methods in
	molecular biology and genetic engineering.
P – IV INDUSTRIAL BIOTECHNOLOGY	To gain knowledge in the exploitation of
	enzymes, microorganisms, and plants to
	produce energy, industrial chemicals and

consumer goods
consumer goods.
To understand the industrial paradigm based
on the expectation that renewable plant-
derived carbohydrates, lipids and other
compounds can displace a significant fraction
of petroleum and other fossil fuels that are
currently the raw material and energy basis of
modern industrial societies.
To develop biotechnology approaches that
will yield 'green' industrial processes that are
cost effective and sustainable.
To enhance problem solving skills of
students through industry oriented projects.
To provide a firm foundation in the
principles underlying modern biotechnology
techniques.
It also helps students to attract them to join
various industries.

P - I CLINICAL BIOCHEMISTRY & ENDOCRINOLOGY	To gain knowledge in chemical and biochemical mechanisms of the body in relation to diseases mostly through the analysis of body fluids such as blood or urine. It also provides an understanding to structures and function of endocrine glands
P – II GENOMICS,PROTEOMICS & BIOINFORMATICS	To gain knowledge in molecular biology this is a requisite for lab biologists or lab managers. It gives an introduction and historical perspective to the field of bioinformatics.
P – III APPLIED BIOCHEMISTRY	To gain basic knowledge on major biomolecules, enzymes, hormones and nutrients and of fundamental chemical principles involved in body mechanism. To study basic principles of biochemical sensor design. To describe the variants of the techniques including isoelectric focusing, rocket immunoelectrophoresis and polyacrylamide gel electrophoresis.