M.SC. MICROBIOLOGY

PROGRAM OUTCOMES

PO1: To train the students in basic and advanced areas of Microbiology, focusing on the recent trends of the discipline with Particular emphasis on the practical aspects.

PO2: To stimulate scholarly progression and intellectual development of the programme grooming the students on par with excellence.

PO3: To promote talent and personality development boosting self-confidence and self-reliance in the student to achieve their goals

PO4: To infuse the latest advances in Microbiology by organizing Conferences, Symposia, Workshops and Webinars.

PO5: To instil moral values of professional ethics in students guiding them to be responsible individuals for a better society.

PROGRAM SPECIFIC OUTCOMES

On completion of program students will be specifically able to

PSO1: Prepare and view specimens for examination using light microscopy

PSO2: Use pure culture and selective techniques to isolate microorganisms. Identify microorganisms (media-based, molecular and serological).

PSO3. Estimate the number of microorganisms in a sample by suitable enumeration technique

PSO4: Use appropriate microbiological and molecular lab equipment and methods.

PSO5: Practice safe microbiology, using appropriate protective, biosafety and emergency procedures.

PSO6: Document and report on experimental protocols, results and conclusions.

Course Outcomes

CO1: Students gain familiarity in various microbiological methods and analytical techniques enabling them to pursue higher education.

CO2: Students' laboratory training will empower them to enrol in research institutions and pharmaceutical industries as career.

CO3: Students cultivate knowledge of the leading edge in a chosen specialized area of Microbiology, based on research experience from a master's project and international literature.

CO4: Students acquire deep insights of a repertoire of microorganisms, their metabolism and industrial applications.

CO5: The Master's degree in Microbiology will address the increasing need for skilled scientific manpower with an understanding of global research applications in the field of basic and applied Microbiology

Course Specific outcomes

CSO1: Students develop the ability to independently carry out multidisciplinaryresearch and communicate to a reputed scientific journal for publication.

CSO2: Students acknowledge health, safety and environmental (HSE) issues in handling and understanding the hazardous chemicals and biological materials.

CSO3: Students can compete in National level competitive exams such as UGC-CSIR NET-JRF or GATE or APSET.

CSO4: Students establish collaboration with various food and pharma industries enhancing student job opportunities

CSO5: Students relieved from the campus are renowned for their abled theoretical and technical skills

CSO6: Student from the campus emerge with positive attitude to face the challenges in the society

I SEMESTER MB 101: GENERAL MICROBIOLOGY

Course Outcomes

CO1: Acquiring Knowledge on Landmark discoveries and contributions in Microbiology CO2: Developing insights into the microbial techniques of sterilization and preservation CO3:Familiarising with general characters of prokaryotic and Eukaryotic cellular organization

CO4:Understanding growth media characteristics and measurement methods CO5:Enlisting the economically important microorganisms

Programme Specific Outcomes

PSO1:Understanding the classification of living organisms
PSO2: Able to understand the Preservation and Maintenance of Microbial cultures
PSO3: Perception of theoretical knowledge on bacterial growth measurements
PSO4:Distinguishing the Ultra structure and characterization of bacterial groups
PSO5: Comprehending the life cycle of prokaryotic (Eubacteria, Archaea, Cyanobacteria) and microscopic Eukaryotic organisms (Algae, Fungi and protozoans).

Learning Outcomes

LO1: Deep insights into the various trends of basic and applied Microbiology

LO2: Emphasizing the discoveries and contributions in the field of Microbiology

LO3: Understanding of basic cellular organisation, morphology, Classification, Pathogenesis and economic importance of various groups of microorganisms

LO4:Comprehending the various methods for identification. isolation, sterilization and cultivation of microorganisms.

LO5: Acquaintance on study of microbial diversity using systematic approaches

MB 102: VIROLOGY

Course Outcomes

CO1: Gaining Knowledge on history, general characters of viruses and their evolution CO2: Characterizing different families of viruses with suitable type study CO3: Differentiating the plant and animal viruses and their cultivation methods

CO4:Perceiving the virus-vector relationships

CO5:Developing insights into sanitation, vector control and immunization control

Programme Specific Outcomes

PSO1: Understanding the classification of viruses

PSO2:Emphasizingbiological and biochemical properties of viruses

PSO3: Comprehending the bacteriophages and other Phages and their replication strategies

PSO4:Gaining insights into the structure and complexity of viral genomes

PSO5:Able to gain knowledge on techniques employed for detection of viruses

Learning Outcomes

LO1: Developing insights on some plant and animal diseases caused by different viruses LO2: Understanding the modes of viral transmission.

LO3: Characterising different types of viruses and their prevention and control methods

LO4: Grasping the importance of Interferons, their induction and therapeutic applications

LO5: Comprehending the complex interaction between viruses and host cells

MB 103: BIOMOLECULES

Course Outcomes

CO1:Overviewing the classification of major biomolecules- carbohydrates, lipids, proteins etc

CO2:Developing insights into classification, chemical properties and functions of lipids

CO3:Gainingconceptual knowledge of proteins and their structural classifications

CO4:Perceiving the chemistry of sterols and steroids

CO5:Understanding the structure, composition, types and functions of Nucleic acids

Programme Specific Outcomes

PSO1: Comprehending the structure and classification of biomolecules

PSO2:Providing the core and specialized knowledge of phospholipids, Glycoproteins, etc. PSO3:Understanding the methods for isolation, characterization and purification of proteins PSO4:Grasping the Physico-chemical properties and characterization of fats and oils PSO5: Emphasizing mineral metabolism in detail

Learning Outcomes

LO1: Able to gain theoretical knowledge on the characterisation of biomolecules

LO2: Understanding the formation of peptide bond- concept of Ramachandran plot.

LO3: Gaining knowledge on vitamins, their classification and biological significance

LO4: Emphasizing the methods for isolation, characterization and sequencing of proteins

LO5: In depth perception of mechanisms of biological oxidations and Mineral metabolisms

MB 104: ANALYTICAL TECHNIQUES

Course Outcomes

CO1: Introducing the basic concepts of qualitative and quantitative analysis of a given sample.

CO2: Deciphering the working of phase, fluorescent and electron microscopes

CO3: Studying various spectroscopic techniques and their applications

CO4:Perceiving the Laws of absorption and radiation

CO5: Comprehending the principle and workingsof radio isotopic tracers

Programme Specific Outcomes

PSO1:Understanding the various types and applications of microscopes

PSO2: Comprehending the principles of chromatography

PSO3:Studying the concept of separation science and its applications

PSO4:Developing theoretical knowledge on electrophoresis and centrifugation techniques

PSO5: Emphasizing the advantages and disadvantages of radioisotopes

Learning Outcomes

LO1: Understanding the principle and applications of basic and advanced microscopy

LO2: Technical expertise of fixing of specimens and methods of sample preparations

LO3: Defining the fundamentals of spectroscopic analysis of biomolecules

LO4: Deep understanding of Principles, types and applications of Centrifugation

LO5: Emphasizing the concepts of radiochemical analysis and their applications

MBP 105: MICROBIOLIGAL METHODS & VIROLOGY

Course Outcomes

CO1: Providing technical expertise in handling and culturing microorganisms

CO2: Perceiving the microbial growth kinetics

CO3: Delivering hands-on experience on various Microscopic and Biochemical methods

CO4: Acquiring training on the general equipment's used in microbiology laboratory

CO5: Identifying and characterising the unknown microorganisms

Programme Specific Outcomes

PSO1:Understanding the different morphological and biochemical characteristics of microbes PSO2: Enlisting the various growth adjuvants and media compositions

PSO3:Enumerating the bacteria quantitatively through viable counts

PSO4:Developing the capability to handle microbial cultures under laboratory conditions PSO5: Training in cultivation of viral, fungal and bacterial cultures under aseptic conditions

Learning Outcomes

LO1: Hands on experience in basic techniques of Isolation, culturing, plating and sterilization.

LO2: Comprehend the major spectrophotometric and titrimetric approaches of biosamples LO3: Basic understanding of cultivation of viruses and their growth characteristics

LO4: Maintenance and preservation of bacterial and fungal specimens under aseptic conditions

LO5: Understanding the working of different equipment's used in microbiological laboratories

MBP 106: ANALYTICAL TECHNIQUES

Course Outcomes

CO1: Understanding the microbial growth kinetics and determination of kinetic parameters CO2: Making students well versed with analytical approaches to quantify major biomolecules CO3: Training the students in handling the instruments used in laboratory with relative ease CO4: Providing technical expertise on titrimetric and colorimetric approaches CO5: Preparing stock solutions with ease and precision

Programme Specific Outcomes

PSO1:Delivering the hands-on experience of various enzymatic assays
PSO2:Developing insights into the different physiological phenomena of enzymes
PSO3: Deep training in chromatographic techniques
PSO4:Skilled training in sample preparation, spectroscopic and quantative analysis
PSO5: Working on qualitative and quantative analysis of samples with relative ease

Learning Outcome

LO1: Understanding the basic principles of Microscopy and their applications

LO2: Comprehending the chromatographic techniques such as PC, TLC, etc.

LO3: Quantitative and qualitative estimations of proteins, sugars, lipids, fats, oils, etc.

LO4: Calculation of molarity, molality and normality in stock solution preparations

LO5: Determining the molecular weight of enzymes / proteins by electrophoretic methods

II SEMESTER

MB 201: MICROBIAL PHYSIOLOGY & METABOLISM

Course Outcomes

CO1: Understanding the intricacies of microbial metabolism, growth and energy generation CO2: Acquainting with the pathways of catabolic and anabolic reactions

CO3: Developing insights into amino acids metabolism

CO4: Emphasizing various fermentation pathways, microbial communication and energetics CO5: Enumerating the utilization of secondary metabolites

Programme Specific Outcomes

PSO1:Developing insights into microbial communities and their adaptations

PSO2:Distinguishing microorganisms based on nutrition

PSO3:Understanding fermentation, aerobic and anaerobic pathways for energy generation PSO4: Emphasizing on the catabolism of purine and pyrimidines

PSO5:Developing insights into the microbial metabolism of hydrocarbons

Learning outcomes

LO1 : Enlisting microbial communities based on their nutritional and energy requirements LO2: Deep insights into the biology of nitrogen fixation

LO2: Deep insights into the biology of nitrogen fixation

LO3: Acquainting with the concepts of microbial cross-talk.

LO4: Perception of biosynthesis of amino acids and their regulation

LO5: Understanding the utilization of secondary metabolites

MB 202: CELL BIOLOGY & ENZYMOLOGY

Course Outcomes

CO1:Specifying the significance of cellular organelles and their biogenesis.

CO2: Perceiving the Physico-chemical properties of bacteria

CO3: Signifying the cellular permeability and transport process

CO4: Developing insights into the mechanism of signal transduction

CO5: Understanding the laws of thermodynamics

Programme Specific Outcomes

PSO1: Gain knowledge on cellular organisation and transport mechanisms

PSO2:Perceiving the concepts of entropy, enthalpy and free energy changes

PSO3:Emphasizing oxidative phosphorylation and theories of ATP generation

PSO4:Analysing the importance of mathematical and statistical methods required for the description, interpretation of enzymatic phenomena and processes

PSO5:To integrate the practical aspects of enzymology with the kinetic theories providing a mechanistic overview of enzyme activity and regulation in cells

Learning Outcomes

LO1: Understanding the biological and biochemicalaspects of photosynthesis and respiration LO2: Perception of basic knowledge of enzyme kinetics, the parameters of the enzymatic reaction and mechanisms of action of enzymes and inhibitors.

LO3: Developing insights into the knowledge on the structure of enzymes and their active sites

LO4: Emphasizing the basic concepts, terms and techniques used in enzymology

LO5: Deep learning of signal transduction and signalling pathways with receptor protein

MB 203: MOLECULAR & MICROBIAL GENETICS

Course Outcomes

CO1: Studying the genetic organization of prokaryotes and eukaryotes at a molecular level CO2: Perceiving the fine structural analysis of Gene

CO3: Enumerating the biological significance of plasmids and their properties

CO4: Gaining insights into transposable elements in yeast and Drosophila

CO5: Developing insights into the mechanisms of mutations and their importance in evolution

Programme Specific Outcomes

PSO1: Emphasizing the Prokaryotic and Eukaryotic genomes and their organisations PSO2:Understanding the microbial inheritance and lateral gene transfer mechanisms PSO3:Enumerating model organisms such as *E. coli, Yeast and Drosophila* PSO4: Acquiring knowledge on molecular markers in DNAPolymorphisms PSO5: Obtaining insights on mutations and various mutagens causing mutations

Learning Outcomes

LO1: Developing insights into the fine structure of genes and multigene families

LO2: Perception of recombination mechanisms at molecular level

LO3: Deep understanding of theSite directed mutagenesis

LO4: Understanding the tetrad analysis and mapping of genes

LO5: Emphasizing the recombination in viruses and their exploitation as genetic tools

MB 204: IMMUNOLOGY

Course Outcomes

CO1: Providing an overview of immune system, antigen- antibody structure and interactions.

CO2: Developing a better understanding of innate and adaptive immunity.

CO3 Theoretical knowledge on autoimmune disorders and hypersensitivity reaction

CO4:Emphasizing MHC and its role in immune response.

CO5: Enlisting the significance of vaccines in disease control and prevention

Programme Specific Outcomes

PSO1:Integrating the knowledge of immunology with health sciences PSO2:Understanding the principle and applications of serological techniques PSO3: Developing insights into Immune response to infectious diseases PSO4:Comprehending the classification and properties of antigens and antibodies PSO5:Emphasizing the applications of monoclonal antibodies in biomedical research

Learning Outcomes

LO1: Understanding the Immunogenicity, adaptive and Innate immunity

LO2: Deep insights into antigenic-antibody interactions, Histocompatibility and autoimmunity

LO3:Perception of Hybridoma technology and its significance

LO4: Gain theoretical knowledge of Immunological tolerance and Immunosuppression.

LO5: Developing theoretical approach towards the immunologicaltechniques

MBP 205: ENZYMOLOGY AND IMMUNOLOGY

Course Outcomes

CO1: Imparting knowledge on basic production, isolation and purification methods of enzymes

CO2: Developing theoretical understanding about enzyme kinetics

CO3: Hands on experience on serological techniques reflecting antigen-antibody interactions CO4:Acquiring technical expertise in handling immunological kits

CO5: Perceiving practical insights into gel casting, serum preparations and blot techniques

Programme Specific Outcomes

PSO1: Understanding the effects of substrate and enzyme concentration on enzyme activity PSO2: Providing technical expertise to basic immunological techniques

PSO3: Training in handling DNA and Protein gel loading and band analysis

PSO4: Technical expertise in quantification and purification of enzymes from bio samples

PSO5: Performing blood grouping and determining Rh factor with precision

Learning Outcomes

LO1: Understanding the mode of action of enzymes and their kinetics

LO2:Acquainting with immunological approaches that encompass detection and understanding of antigen-antibody interactions

LO3: Technically trained to determine and quantify the presence/absence of antigens and antibodies in biological samples

LO4: Hands on experience on gel casting (SDS-PAGE) and electroblotting techniques LO5: Well versed with calorimetric and spectroscopic analysis

MBP 206: MICROBIAL PHYSIOLOGY AND GENETICS

Course Outcomes

CO1: Understanding the microbial growth kinetics

CO2: Providing basic insights of microbial genetic manipulations

CO3: Training the students in handling and manipulating the microbial samples

CO4: Making students well versed with analytical approaches to quantify major biomolecules

CO5: Acquiring technical expertise in handling microbial genetics kits

Programme Specific Outcomes

PSO1:Developingdeep insights into different physiological phenomenon's

PSO2: Trained to handle microbial genetic modification strategies

PSO3: Providing hands on experience in banding and karyotyping

PSO4: Hands on experience in handling chemical mutagens

PSO5: Overall practical understanding of DNA repair mechanisms

Course Structure

1. Estimation of proteins by Biuret method and Folin Ciocalteau method.

- 2. Estimation of DNA by Diphenyl amine method.
- 3. Estimation of RNA by Orcinol method
- 4. Estimation of Inorganic and organic phosphates by Fiske-SubbaRow method.
- 5. Estimation of Ammonical nitrogen and nitrates.
- 6. Strain improvement using chemical mutagens.
- 7. Isolation of mutants using EMS.
- 8. UV Survival curve of *E.coli*. or any other bacteria.
- 9. Study of the repair mechanism for the damage caused by UV radiation.
- 10 Find the effectiveness of disinfectants by Phenol coefficient test.
- 11. Demonstration of Ames test.

12. Protoplast preparation and regeneration.

13. Chromosome isolation, banding and karyotyping.

14. Bacterial conjugation

Learning Outcome

LO1: Developing capability to quantify proteins and nucleic acids

LO2: Perceiving insights to perform different gene transfer methods in microbes

LO3: Handling of the general equipment's used in microbiology laboratory with ease

LO4:Comprehending the major spectrophotometric approaches in quantification ofbiosamples

LO5: Expertized in titrimetric and calorimetric analysis.

III SEMESTER MB 301: MOLECULAR BIOLOGY

Course Outcomes

CO1: Understanding the organisation of genetic material and their hereditary patterns

CO2: Perceiving the concepts of central dogma and the deciphering of genetic code

CO3: Enumeratingthesteps involved in transcription and translational mechanisms

CO4: Gaining insights into catabolite repression mechanism

CO5: Distinguishing different modes of gene regulation and their expressions

Programme Specific Outcomes

PSO1:Emphasizing the mechanisms of replication, transcriptional and translational processes PSO2: Understanding the biology of cancer and tumours

PSO3: Enumerating the various enzymes and their importance in replication

PSO4:Deep learning of gene regulation at the levels of transcription and translation

PSO5:Perceiving the importance of Regulatory genes, structural genes and repressors **Learning Outcomes**

LO1: Understanding the importance of DNA and RNA that govern inheritance patterns

LO2: Emphasizing the role of RNA in decoding and protein synthesis

LO3: Insights into the mode of action of antibiotics on protein synthesis

LO4: Perception of post transcriptional and post translational modifications

LO5: Acquiring critical knowledge on telomerase replication, Intron splicing and protein channelling

MB 302: MEDICAL MICROBIOLOGY

Course Outcomes

CO1: Acquiring basic knowledge of host- microbe interactions

CO2: Understandingdiseases and their persistence in populations

CO3: Perceiving the biology of vectors and their role in disease transmission

CO4: Enlisting diseases of public significance, their prevention and control.

CO6: Gaininginsights into Epidemiological studies, Herd immunity and Notifiable diseases

Programme Specific Outcomes

PSO1:Enumerating the diseases caused by Bacteria, Fungi, Protozoa, Helminths and Viruses

PSO2: Understanding the pathogenesis of medically significant diseases

PSO3: Emphasizing the importance of etiology of diseases

PSO4:Identifying the portals of entry and exit in disease transmission

PSO5: Developing insights into Sexually transmitted diseases

Learning Outcomes

LO1: Deep understanding of the microbial flora existing in humans

LO2: Gaining theoretical knowledge of most common medically significant organisms and the infections caused by them

LO3: Enumerating the methods and vehicles of disease transmission

LO4: Understanding the disease cycles and their out breaks

LO5: Systematic knowledge on the pathogenesis and laboratory diagnosisof diseases

LO6: Distinguishing nosocomial and zoonotic diseases with specific type studies

MB 303: BIOSTATISTICS & BIOINFORMATICS

Course Outcomes

CO1: Imparting basic knowledge of biostatistics and tools employed for quantitative analysis

CO2: Gaining in depth knowledge on principles of Probability

CO3: Understanding the concepts of genomics, proteomics and transcriptomics

CO4: Developing modules predicting the protein secondary structure

CO5: Emphasizing theability to modify gene and protein structures in simulated systems

Programme Specific Outcomes

PSO1:Providing an overview of various bioinformatics tools, databases and sequence analysis

PSO2: Gaining practice on statistical problems on mean, median, mode, standard deviation PSO3: Developing the concepts of World Wide Web and internet

PSO4: Insights into peptide finger printing and fragment assembly

PSO5: Understanding the molecular dynamics in protein structure prediction

Learning Outcomes

LO1: Insights into statistical approaches such as ANOVA, F-test,T -tests and Chi square tests.

LO2: Developing an overview on searching and alignment of biological databases

- LO3: Understanding the genome annotation and algorithms of gene prediction
- LO4: Construction of phylogenetic trees using clustering methods
- LO5: Perception of 3D models of protein structure predictions

MB 304: MOLECULAR BIOTECHNOLOGY

Course Outcomes

CO1: Enumerating the versatile tools and techniques employed in r DNA technology

CO2: Familiarizing with the cloning strategies and gene expression analysis

CO3: Enlisting the enzymes and their functions constituting genetic tool kit

CO4: Developing basic insights into nanotechnology, their synthesis and applications

CO5: Emphasizing on nucleic acid probe technology and their applications

Programme Specific Outcomes

PSO1: Gaining insights into the techniques of rDNA technology

PSO2: Perception of the expression of cloned genes in prokaryotic and eukaryotic host systems

PSO3:Understanding the screening of recombinants as well the expression of cloned genes PSO4: Emphasizing the structural and functional analysis of recombinants

PSO5:Developing acumens into the synthesis of nanoparticles and therapeutic importance **Learning Outcomes**

LO1: Developing sound knowledge on procedural repertoire and strategies in gene cloning

LO2: Enumerating the applications of genetic engineering in basic and applied biology

LO3: Computing the applications of nanomedicine in cancer biology

LO4: Understanding the genetically inherited disorders and gene therapy

LO5: Acquiring deep insights into DNA and protein microarray techniques

MBP 305: MOLECULAR BIOLOGY & MOLECULAR BIOTECHNOLOGY

Course Outcomes

CO1: Understanding the various techniques of recombinant DNA technology

CO2: Learning the isolation of genomic and plasmid DNA

CO3: Acquiring skilled expertise in handling molecular biology kits

CO4: Synthesizing silver nanoparticles and characterizing spectroscopically

CO5: Carrying out antimicrobial activity of green synthesized AgNPs

Programme Specific Outcomes

PSO1: Developing laboratory skilled knowledge in molecular biology experiments

PSO2:Trained hands-on experience in PCR and blotting techniques

PSO3: Understanding the practical difficulties in managing laboratory reagents

PSO4:Practical handling of PCR and its trouble shooting technical expertise

PSO5: Handling the instruments in the lab with ease

Learning Outcomes

LO1: Developing practical experience in extraction of DNA/RNA

LO2: Hands on experience in restriction digestion, gel electrophoresis and gel elutions

LO3: Gaining skilled knowledge in performing Transformation and bacteriophage titration LO4: Synthesizing nanoparticles and executing their antimicrobial properties LO5: Working on problems related to DNA/RNA and their characterization

MBP 306: MEDICAL MICROBIOLOGY, BIOSTATISTICS AND BIOINFORMATICS

Course Outcomes

CO1: Demonstrating culture dependent studies of microbes and their disease manifestations

CO2: Acquiring technical expertise in handling diagnostic kits

CO3: Providing hands-on experience to basic serological techniques

CO4: Impartingknowledge in basic tools and algorithms used in bioinformatics

CO5: Understanding Protein data bases and genome sequence analysis

Programme Specific Outcomes

PSO1: Performing microbial isolation and biochemical characterization of biological samples PSO2: Distinguishing the microorganisms by biochemical and cultural characterization PSO3:Learning methods for antimicrobial susceptibility testing

PSO3: Learning methods for antimicrobial susceptibility testing

PSO4: Skilled training in gene clustering and protein modelling

PSO5: Developing in-silico practice in handling bioinformatics tools

Learning Outcomes

LO1: Technical expertise in isolation and identification of microbes from biological fluids

LO2: Hands on experience on serological diagnosis of HIV and Hepatitis

LO3: Practical knowledge on blood profiling protocols

LO4: Demonstrating the Insilco analysis for genome annotation and gene prediction

LO6:Working on problems related to measures of central tendency, t-test and chi square test

IV SEMESTER

MB 401: FERMENTATION TECHNOLOGY & INDUSTRIAL MICROBIOLOGY

Course Outcomes

CO1: Imparting knowledge on the exploitation of microbesin Fermentation technology

CO2: Emphasizing the steps involved in downstream processing

CO3: Enumerating the role of micro-organism in production of organic acids, alcohols, wine, vinegar, enzymes, vitamins, antibiotics, amino-acids and steroids.

CO4: Gaining deep insights into biofilms, biosurfactants, biofuels and bioleaching agents

CO5:Developing knowledge on the design of digesters and their applications

Programme Specific Outcomes

PSO1: Understanding the design of bioreactors and media formulations in fermentation technology

PSO2:Developing newStandard operating procedures for enhanced production and product recovery

PSO3: Perceiving the steps involved in the industrial production of antibiotics

PSO4:Insights into thermophilic and methanogenic archaebacteria in oil fields instituting Petroleum Microbiology

PSO5:Enlisting the industrially important microbial products

Learning Outcomes

LO1: Understanding the industrial production and purification of organic acids, alcohols, wine and vinegar

LO2: Learning microbial growth and product formation kineticsin fermentation technology LO3: Developing techniques of sterilization, isolation, preservation and improvement of industrially important micro-organisms

LO4: Perception of microorganism's role in biotransformation and leaching mechanisms LO5: Emphasizing the exploitation of microbes in biogas and biofuels production as smallscale industry

MB 402: ENVIRONMENTAL MICROBIOLOGY

Course Outcomes

CO1: Providing basic understanding of microbial diversity in the environment

CO2: Developing insights into concept and components of ecosystem

CO3: Perceiving microbial interactions with chemical pollutants in the environment

CO4: Gaining deep insights into soil microbiology, aquatic and aero microbiology

CO5: Enumerating the effects of chemical pollutants in the environment

Programme Specific Outcomes

PSO1:Understanding the intricacies of the ecosystem

PSO2: Emphasizing the microbiology of Air and water

PSO3:Acquiring familiarity on Environmental impact assessment studies

PSO4:Gaining theoretical knowledge in microbial waste management and recycling

PSO5:Developing cognizance in biomagnification, biofouling and Bioremediation processes.

Learning Outcomes

LO1: Understanding biological spectrum at levels of organization & realm of ecology

LO2: Perception of Energy transfer efficiencies between tropic levels

LO3: Insights into kinetic principles of Prey predator relationship.

LO4: Theoretical knowledge on Air sampling and air sanitation

LO5: Enumerating the role of microbes in degradation of oil spills, pesticides and detergents.

MB 403: FOOD MICROBIOLOGY & AGRICULTURAL MICROBIOLOGY

Course Outcomes

CO1: Providing the basics to the general principles of food microbiology

CO2: Developing insights towards types of microbial spoilage of foods

CO3: Enumerating the microbes as Probiotics, Prebiotics and Synbiotics

CO4: Comprehending the role of Microorganisms in biogeochemical cycles.

CO5:Acquiring theoretical knowledge on the mode of action of biofertilizers and biopesticides

Programme Specific Outcomes

PSO1:Understanding the epidemiology of food borne microorganisms of public health significance

PSO2:Analysing the significance of microbiological quality control programmes in food production

PSO3: Acquiring insights towards microbial composition and sampling techniques

PSO4: Emphasizing the importance of biofertilizers and biopesticides over chemical methods PSO5:Enlisting the various microbial groups employed as biocontrol agents

Learning Outcomes

LO1: Understanding food spoilage microorganisms; the microbiology of food preservation and food commodities; fermented and microbial foods

LO2: Developing principles and methods for the microbiological examination and preservation of foods

LO3: Emphasizing the role of microbes in maintaining soil profile and fertility

LO4: Insights into the role of microorganisms in decomposition of cellulose, hemicellulose and lignin's

LO5: Enumerating the various classes of microbes employed as biofertilizers and biocontrol agents

MB 404: PHARMACEUTICAL MICROBIOLOGY

Course Outcomes

CO1: Understanding the classification and mode of action of antibiotics

CO2: Acquiringbasic knowledge on the rules and regulations of GMP and GLP

CO3: Emphasizing the types of IPRs and their management

CO4: Gaining insights into microbial testing in pharma industry

CO5: Enumerating the role of microorganisms in the pharmaceutical industry

Programme Specific Outcomes

PSO1:Understanding the use and abuse of antibiotics and drug resistance

PSO2:Enlisting various chemical as possible antimicrobials

PSO3:Enumerating the rules and regulations of WHO, ISO and US FDA

PSO4: Emphasizing the hierarchical tiers of quality management in pharma industry

PSO5: Perceiving the impact of Patenting biotechnological inventions and ELSI

Learning Outcomes

LO1: Enlisting a wide range of chemicals employed as disinfectants, antiseptics and preservatives

LO2: Developing insights into the hierarchical systems of quality control, quality assurance and quality management tiers in pharma industry

LO3: Enumerating the various sterility tests practised in manufacture of sterile and nonsterile medicinal formulations

LO4: Perception of the properties and limitations of patents, trade secrets and copy rights

LO5: Emphasizing the types of microbial spoilage and their preventive measures

MBP 405: INDUSTRIAL MICROBIOLOGY AND ENVIRONMENTAL MICROBIOLOGY

Course Outcomes

CO1: Providing exposure to design and run batch fermentation experiments

CO2: Developing practical knowledge in production of acids and alcohols by fermentation

CO3: Gaining skilled expertise in product recovery

CO4: Estimating DO, COD and BOD of water samples

CO5:Checking water potability with suitable procedures

Programme Specific Outcomes

PSO1: Acquiring skilled training in the quantification of biological samples

PSO2:Gaining expertise in handling fermenters with technical ease

PSO3: Developing new approaches for production and recovery of fermented products

PSO4: Understanding the adverse effects of pesticides on soil microbes

PSO5:Estimating, characterizing and identification of air flora and soil flora

Learning Outcomes

LO1: Hands on experience on preparation of wine by fermentation

LO2: Practical insights on understanding the various parameters in downstream processing

LO3: Developing skills towards advanced fermentation technology

LO4: Technical expertise in air sanitation and environmental monitoring

LO5: Performing qualitative analysis of water samples

MBP 406: FOOD, AGRICULTURAL & PHARMACEUTICAL MICROBIOLOGY Course Outcomes

CO1: Providing hands on experience on quality food testing

CO2: Developing practical knowledge on microbiological quality testing

CO3: Isolating and characterizing economically important microorganisms

CO4: Acquiring skilled expertise in performing assays of antibiotics and vitamins

CO5: Providing training in the preparation and evaluation of biofertilizers and biopesticides **Programme Specific Outcomes**

PSO1:Technical experience on isolation and characterization of microbes isolated from different food sources

PSO2:Gainingproceduralacumens into antibiotic sensitivities towards test pathogens

PSO3:Developing practical insights into microbiological assays

PSO4:Designing experiments to produce biofertilizers and biopesticides with better efficiency

PSO5: Extending outsourcing programmes on quality check analysis of food and water **Learning Outcomes**

LO1: Developing skilled training in microbiological examination of fresh and canned foods

LO2: Technical expertise in quality testing of milk and milk products

LO3: Determining the microbial sensitivities of drugs on various test organisms

LO4: Acquiring experience in isolation and culturing of Rhizobium and Azotobacter

LO5: Gaining practical awareness in handling the equipment's in the laboratory.