B.Sc - Biotechnology Honours

Programme Outcomes

Number	Programme Outcomes	
PO1	Summarize the concepts, principles, classification, theories and mechanisms	
PO2	Discuss hypothesis, procedures, results, applications, conclusions	
PO3	Tools and Techniques in solving problems, sample analysis and production	
PO4	Develop Skills to sustainability, higher progression and employability	

COURSE OUTCOMES

Semester/Title of	Course Outcomes
paper	
Semester I	
Introduction of	CO1: Learn the principles of classification and preservation of biodiversity
Classical Biology	CO2: Understand the plant anatomical, physiological and reproductive processes.
	CO3: Knowledge on animal classification, physiology, embryonic
	development and their economic importance.
	CO4: Outline the cell components, cell processes like cell division, heredity and molecular processes
	CO5: Comprehend the chemical principles in shaping and driving the
	macromolecules and life processes
Introduction of	CO1: Learn the history, ultrastructure, diversity and importance of
Applied Biology	microorganisms.
	CO2: Understand the structure and functions of macromolecules.
	CO3: Knowledge on biotechnology principles and its applications in food
	and medicine.
	CO 4: Outline the techniques, tools and their uses in diagnosis and therapy.
	CO5: Demonstrate the bioinformatics and statistical tools in
	comprehending the complex biological data
Semester II	
Biomolecules and analytical	CO1: Learn about classification, structure and properties of Carbohydrates, Proteins and Lipids.
Techniques	CO2: Learn about structure and function of DNA, RNA, Vitamins and
	Bioenergetics.
	CO3: Learn about basic principles of Centrifugation, Chromatography and
	Electrophoresis.
	CO4: Learn about principles of Spectroscopy, Microscopy and Techniques.
	CO5: Learn about basics of Biostatistics.
Microbiology and	CO1: Learn about Scope and Techniques of Microbiology.
cell biology	CO2: Learn about concept of Microbial species and strains
	CO3: Learn about cell structure and function.
	CO4: Learn about cell signalling and control mechanisms.
	CO5: Learn about genome organization of prokaryotic and eukaryotic
	organisms

Semester III	
Plant and animal	CO1: Learn about plant tissue culture techniques and secondary
Biotechnology	metabolites production.
	CO2: Learn about transgenesis and molecular markers.
	CO3: Learn about animal tissue culture techniques
	CO4: Learn about transgenic animals and gene therapy.
	CO5: Learn about Bioethics, Biosafety and IPR
Molecular Biology	CO1: Learn about genome structure and organization.
	CO2: Learn about mechanism and enzymes of DNA replication.
	CO3: Learn about enzymatic synthesis and features of transcription.
	CO4: Learn about regulation of gene expression.
	CO5. Learn about genetic code and protein synthesis.
Genetic Engineering	CO1:Learn about the history and tools of genetic engineering
	CO2: Learn about vectors used in genetic engineering
	CO3: Learn about Hybridization techniques
	CO4. Learn about vectors and their screening techniques
	CO5. Learn about gene editing tools
Metabolism	CO1: Learn about Carbohydrate metabolism
	CO2. Learn about Lipid metabolism
	CO3. Learn about Amino Acid metabolism
	CO4. Learn about nomenclature and specificity of enzymes
	CO5. Learn about enzyme kinetics of enzyme.
Semester IV	
Immunology	CO1: Learn about types of immunity and cells of immunity
	CO2: Learn about Antigen and Antibody
	CO3: Learn about cell , humoral immunity and MHC molecules
	CO4: Learn about Hypersensitivity and vaccines
	CO5: Learn about immunological techniques
Bioinformatics and	CO1: Learn about concept and branches of bioinformatics
Biostatistics	CO2: Learn about searching sequences using databases
	CO3. Learn about computer phylogenetics
	CO4. Learn about the measurement of central tendency
	CO5. Learn about test hypothesis
Medical	CO1:Learn about diseases caused by microbial sources
Biotechnology	CO2. Learn about epidemiology, pathogenicity, laboratory, diagnosis,
	prevention and control of bacterial diseases
	CO3. Learn about fungal, viral and protozoan diseases
	CO4. Learn about gene therapy and vectors used in gene therapy
	CO5. Learn about drug discovery, therapeutic applications