SEMESTER –I (M.Sc Organic and Analytical Chemistry)

Course	Outcomes
	After completion of these courses a student will gain knowledge in
P –I General Chemistry	CO -1 - Basics of Quantum chemistry like Operators, Properties of wave function, Postulates , Setting of Operators for Observables Eigen values and Eigen functions
	CO-2 - Quantization of all forms of energies using models like particle in 1 D box, Particle in 3 D box, Rigid Rotor , Simple Harmonic Oscillator and Tunneling effect
	CO-3 - Knowledge on interaction of electromagnetic radiation and matter and its application in spectroscopy.
P-II Inorganic Chemistry	CO-1 - The application of VSEPR theory and molecular orbital theory
	CO-2 - Inorganic cage and ring compounds
	CO-3 - Concepts of Crystal field splitting, Jahn teller effect and Term symbols.
	CO-4 - Electronic spectra & magnetic properties of transition metal complexes
P-III Organic chemistry	CO-1 - Reaction mechanisms and various reagents in Different Reactions
	CO-2 - Applying the mechanisms to Hetrocyclic Chemistry and natural Products
P-IV Physical Chemistry	CO-1 - Chemical equilibria , Partial molar property, Effect of Temperature on Pressure and Vice Versa, Entropy and its measurement
	CO -2 - Surfactant and their applications, Polymers , Kinetics of polymerization and molecular weight determination
	CO-3 - Theories of Reaction rates, Factors affecting Rate, Free energy relationship, Fast Reactions
	CO-4 - Photophysicall Process and Photochemical Process

SEMESTER – II (M.Sc Organic and Analytical Chemistry)

Course	Outcomes			
	After completion of these courses a student will gain knowledge in			
P -I General Chemistry	CO-1 Shapes of orbitals , Probability distribution, approximation methods .			
	CO-2 Approximation methods like Variation Method and Perturbation Theory. To understand the shapes of orbitals.			
	CO- 3 Basics of Group theory and its applications to classification of molecules into groups			
	CO -4 Writing flowcharts for certain important equations involved in Chemistry			
P-II Inorganic Chemistry	CO - 1 - Concepts of structure and bonding in metal clusters			
	CO - 2 - Basic ideas of metal carbonyls, Nitrosyls and Dinitrogen complexes, acquainted with Metallocenes and Isolobal relationship			
	CO-3 - Concept of stability constant, their determination and SHAB principle			
	CO-4 - Inert and Labile complexes according to VBT and CFT			
	CO-5 - Acid – Base hydrolysis and trans effect, Electron transfer reaction			
P-III Organic chemistry	CO-1 Reactions and their mechanisms			
	CO-2 Spectroscopic methods to analyse the structure of all organic compounds			
P-IV Physical Chemistry	CO- 1 Magnetic properties, Principle of nuclear magnetic spectroscopy, and Ability to interpret the NMR spectrum and the structure of Compound corresponding to it			
	CO -2 Paramagnetic substances and their ESR spectrum			
	CO-3 Various types of Electrochemical cells and their applications, Determination of redox potentials and factors affecting the potentials.			
	CO- 4 Butler volmer equation, tafel plot and their application in Electroanalytical techniques			

SEMESTER - III (M.Sc ORGANIC CHEMISTRY)

	Outcomes			
Course	After completion of these courses a student will gain knowledge in			
P- I, Organic reaction mechanism	CO-1 Developing expertise in the areas of pericyclic reactions and photochemistry.			
	CO-2 Understanding the reaction mechanisms and applications of pericyclic reactions.			
	CO-3 Practical applications such as synthesis of organic compounds.			
	CO-4 Understanding the process involved in vision, photosynthesis, solar energy conversions etc			
P-II, Organic Spectroscopy	CO-1 Identification of the functional groups of the organic molecules.			
	CO-2 Determining the molecular identity and structure of organic compounds.			
	CO-3 Measuring mass to charge $ratio(m/z)$ of one or more molecules present in a sample.			
	CO-4 Determining the complete structure of the organic molecules using all the above spectroscopic methods.			
P-III, Organic Synthesis	CO-1 Generating C-C bond by using different named reactions. Learning about organometallic reagents.			
	CO-2 In learning and applying wittig and pyrolytic elimination reactions in various mechanisms.			
	CO-3 Understanding various applications of polymers with the help of HLF and BARTON reactions.			
	CO-4 Learning concept of chirality in molecules. Using nano materials and phase transfer catalysis.			
P-IV, Chemistry of natural products	CO-1 Various types of antibiotics and their applications.			
	CO-2 Synthesis of various alkaloids like morphine and reserpine and their applications in medicinal chemistry.			
	CO-3 Terpenes applications in medicinal chemistry.			
	CO-4 Applications of natural pigments in our daily life			

SEMESTER - III (M.Sc ANALYTICAL CHEMISTRY)

Course	Outcomes		
	After completion of these courses a student will gain knowledge		
	in		
P- I, Separation methods	CO-1 The principles of Chromatography .		
	CO-2 Learning the concepts of paper chromatography, TLC, HPTLC.		
	CO-3 In column chromatography, gel filteration chromatography and Capillary electrophoresis.		
	CO-4 Principles and instrumentation of gas chromatography and GCMs.		
P-II, Quality control and traditional methods of analysis	CO-1 Quality control in analytical chemistry. Evaluation, reliability and statistical data .		
	CO-2 Decomposition techniques in the analysis of organic and inorganic compounds. Principles of microwave and ultrasonic decomposition techniques.		
	CO-3 Principles and applications in the analysis of oxidant systems.		
	CO-4 Classification of organic functional groups with examples and their determinations.		
P-III, Applied analysis	CO-1 Scope of metallurgical analysis, quantitative determinations of constituents present in different ores.		
	CO-2 Analysis of finished products like steel, refractive materials, fluxes.		
	CO-3 Analysis of oils, paints, soaps, cement.		
	CO-4 Determination of BOD, COD, DO in water sample and assessment of water quality.		
P-IV, Instrumentational method of analysis	CO-1 Principles and instrumentation of uv- visible spectroscopy and its applications.		
	CO-2 Interpreting IR spectrum and acquiring knowledge in FTIR and ATR.		
	CO-3 Principles and instrumentation of NMR and ESR and their applications.		
	CO-4 Principle, instrumentation and applications of mass and X-ray spectroscopy.		

SEMESTER – IV (M.Sc ORGANIC CHEMISTRY)

Course	Outcomes			
	After completion of these courses a student will gain knowledge in			
P- I, Organic reaction mechanism	CO-1 Modern synthesis and multicomponent reactions.			
	CO-2 Oxidation reactions and the reagents involved.			
	CO-3 Reduction reactions and reagents involved.			
	CO-4 New methods of Organic synthesis			
P-II, Organic Spectroscopy	CO-1 Applications of 13C NMR in hetero-nuclear couplings.			
	CO-2 Assigning the structure of too complicated molecules with 2DNMR.			
	CO-3 Finding out the configurations of molecules.			
	CO-4 Finding out the structures of natural products by spectral methods.			
P-III, Organic Synthesis	CO-1 Designing different organic molecules.			
	CO-2 Synthetic applications of organo boranes and organo silanes.			
P-IV, Chemistry of natural products	CO-1 Understanding basic consideration of drugs.			
	CO-2 Drug designing, synthesis and their importance.			

SEMESTER - IV (M.Sc ANALYTICAL CHEMISTRY)

Course	Outcomes			
	After c	completion of these courses a student will gain knowledge in		
P- I, Separation	CO-1	Principles and applications of Ion exchange		
methods-II		Chromatography and ion Chromatography.		
	CO-2	Principles and instrumentation of liquid-liquid partition		
		chromatography, HPLC and LCMS.		
	CO-3	Sampling of solids, liquids and gases.		
	CO-4	Importance of analytical chemistry in Research and		
		development. Principles of solvent extraction methods.		
P-II, Quality	CO-1	Precipitation, coprecipitation, post precipitation methods		
control and		and titrations.		
methods of	CO-2	PFHS, Gravimetric determinations of inorganic and organic		
analysis		precipitants and electrogravimetric analysis.		
	CO-3	Principles and applications in the analysis of reductant		
		systems.		
	CO-4	Basic Classification of drugs and their determinations.		
P-III, Applied Analysis	CO-1	Analysis of raw materials like non ferrous alloys and ferrous alloys.		
	CO-2	Analysis of soils, fertilizers and fuels.		
	CO-3	Assessment of air quality.		
	CO-4	Kinetic methods of analysis and non-aqueous titrations.		
P-IV, Instrumentational method of Analysis	CO-1	Theory and instrumentation of atomic absorption		
		spectroscopy, flame photometry, ICPAES and ICPMS.		
	CO-2	Thermal methods of analysis like, TG, DTA, and DSC.		
	CO-3	Analysis of voltametry, polarography, anode stripping voltametry and coloumetric analysis		
		. on and consumerite analysis.		
	CO-4	Ion selective electrodes and radiochemical methods of analysis		